
IF Data Handling Layer Design

Overview
The data handling layer for the Intensity Frontier experiments needs to meet the various
requirements in the Data Handling Requirements for Intensity Frontier Experiments. This
document presents a design for tools to assist in that. As each component is discussed, the
requirements it meets will be reviewed.

Rationale
We want to provide an easy migration path for IF experiments who currently operate in a mode
where they run site-local batch jobs where their experiment data disks are visible via NFS and
all of their data is on disk, to a mode where they run batch jobs OSG-wide, and possibly stage
to and from tape via intermediate disk with SAM. They should be able to do this in stages,
where they:

● replace cp or cpn commands with ifdh commands;
● declare metadata for their files into SAM;
● use metadata queries to build data-sets for analysis
● use metadata/dataset project queries to get file locations

without interrupting or significantly changing their current work-flow.

Expected Usage

We expect users to
● declare datasets for their jobs to analyze, eiher with the web GUI or with ifdh

define_dataset
● submit jobs with our DAG based jobs submit script
● in those jobs, obtain input files with a “ifdh next_file” call
● copy output files back to a staging area with “ifdh cp”
● Use the File Transfer Service to stage the output files to tape and/or semi-permanent

disk storage

Packaging
The later versions of the data handling layer will be provided as two files: a small executable
called ifdh and a shared library ifdh.so which will have the C++ and Python callable interfaces.
Having it be only two files will facilitate it being transferred to Grid jobs so that they can be used
to transfer other files. The library will use an https interface to contact a web service fronting
the data handling service (i.e. SAM), to avoid the network firewall issues with the current SAM/
Corba interface. Also, this simplified set of commands/functions should be sufficient for users
submitting jobs, and be easier to learn than the full SAM suite of commands. Secondarily, these
calls could be implemented in many cases without SAM, but by some other set of data handling
tools.

Early (prototype) versions of the package may have only the command line tool impemented as
a shell or python script.

Functional Specification

There will be several areas of functionality in this executable and library, described below. Each
of these will be defined in terms of method calls to an ifdh object, but they will also be provided
by the ifdh executable; so that

 ifdh.method(arg, arg,...)

in a C++ or Python program is equivalent of doing

 ifdh method arg arg ...

in a shell script. The command line wrapper will present results of function calls that return
(lists of) strings by printing results to stdout. The command line tool will exit with an exit code of
the return value of functions returning an integer status.

Logging

int ifdh.log(message)

log message to IF job logging service Also, all of the other commands/calls below will log
suitable information to the IF job logging service. A zero return indicates success.

File Transfer
int ifdh.cp(source/filename,destination)

This will copy a file from a known source to the local disk or vice versa, and make sure any
underlying data handling system is made aware. It will use CPN or equivalent for copies from
visible NFS mounted storage, or use gridftp to obtain files not visible via NFS. A zero return
value indicates success.

ifdh.rm(location/filename)

This will remove a file from a given location, updating any underlying data handling system. A
zero return value indicates success.

Metadata/Datasets

In this scenario, jobs do not deal with metadata directly; the File Transfer Service stores files
with metadata, and jobs do not themselves declare metadata to the data handing service. They
are expected to put metadata into files (ART framework) or next to files.
(i.e. file.metadata.py) However, outside of jobs, scripts may need to do some metadata
related work. So in a later release, the following calls will simply pass through to the SAM web
interface.
int ifdh.createDefinition(name, dimensionstring, username)
int ifdh.deleteDefinition(name)
string ifdh.describeDefintion(name)
string ifdh.translateConstraints(dimensionstring)
string ifdh.locateFile(filename)

Also in a later release we may support the following to allow automated job submeission tools:

ifdh.recoveryFileset(projectname, datasetname)
Makes a fileset of files not completed in project projectname.

Projects

string ifdh.startProject(projectname, station, datsetname, userstring [,group])
Starts a project to deliver the files in filesetname in some order. Returns a URL handle for the
project.

string ifdh.establishConsumer(projectname,appname, appversion, deliverylocation,user)
Joins a project as a conusmer process, returns your project consumer url string.

string ifdh.nextFile(consumer_url)
Returns the location of the next file in the project, suitable for use with ifdh.cp().

ifdh.releaseFile(consumer_url, filename, status_ok)
Declares you've finished reading the file, and whether it went ok.

int ifdh.endProcess(consmer_url, int status_ok)
Indicate you're done working on a project, and whether your handling of all files went ok.

Sample Job wrapper script

 # values from invocation
 inputfilename=...
 outputfilename=...
 projectname=...

 # join project, get consumer process url
 cpurl=`ifdh establishConsumer $projectname`

 # say we're done on exit or kill signal
 trap "ifdh endProcess $cpurl failed" 0 1 2 3 4 5 6 11 15
 while :
 do
 fname=`ifdh.nextFile $cpurl`
 if [“x$fname” = “x”]
 then
 # no more files...
 break
 fi

 ifdh cp $fname $inputfilenmae

 # process it
 executable arg1 arg2 …

 # report processing it
 ifdh releaseFile $cpurl $fname ok

 # copy output file to staging area for FTS to file
 ifdh cp $outputfile /some/stage/area

 # if we have an external metadata file, copy it out , too
 ifdh cp $outputfile.metadata /some/stage/area

 done
 ifdh endProcess $cpurl
 ifdh setstatus $cpurl ok

